Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Journal of infection and public health ; 2023.
Article in English | EuropePMC | ID: covidwho-2287706

ABSTRACT

Background Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. Methods A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 16 S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. Results No significant (p>0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p<0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7%) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. Conclusions Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.

2.
J Infect Public Health ; 16(5): 680-688, 2023 May.
Article in English | MEDLINE | ID: covidwho-2287707

ABSTRACT

BACKGROUND: Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS: A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS: No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS: Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.


Subject(s)
COVID-19 , Coinfection , Microbiota , Respiratory Tract Infections , Humans , Saudi Arabia/epidemiology , SARS-CoV-2 , Nasopharynx , Klebsiella pneumoniae , Obesity , Respiratory Tract Infections/epidemiology
3.
Diagnostics (Basel) ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1887179

ABSTRACT

Background: The global pandemic coronavirus SARS-CoV-2 has a healthcare, social and economic burden. To limit the spread of the virus, the World Health Organization (WHO) urgently called for extensive screening of suspected individuals; thus, a quick, simple, and sensitive diagnostic assay is always in need. Methods: We applied reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for the detection of SARS-CoV-2. The RT-LAMP method was optimized by evaluating two fluorescence amplification mixes and several reaction times, and results were compared to the standard real-time RT-PCR (rtRT-PCR). The assay was validated using 200 nasopharyngeal swabs collected in viral transport media (62 positive for SARS-CoV-2, and 138 negative for SARS-CoV-2 detected by the rtRT-PCR method). The samples were diluted 1:4 in diethylpyrocarbonate (DEPC)-treated water, utilized for RT-LAMP using different singleplex and multiplex sets of LAMP primers (N gene, S gene, and orf1ab gene), and incubated at 65 °C using real-time PCR 7500. Results: Our direct detection with the RT-LAMP protocol showed 100% concordance (sensitivity and specificity) with the standard protocol used for the detection of SARS-CoV-2 nucleic acid. Conclusions: In this study, we set up a rapid, simple, and sensitive RT-LAMP assay for the detection of SARS-CoV-2 in clinical samples. The assay is suitable for point of care detection in public hospitals, medical centers in rural areas, and in transportation hubs.

4.
J Infect Public Health ; 15(6): 628-630, 2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1873160

ABSTRACT

In the era of SARS-CoV-2 variants and COVID-19 vaccination, the duration of infectious viral shedding and isolation in post vaccine breakthrough infections is challenging and depends on disease severity. The current study described a case of SARS-CoV-2 Delta variant pneumonia requiring hospitalization. The patient received two doses of BNT162b2 COVID-19 vaccines, and he had positive SARS-CoV-2 viral cultures 12 days post symptom onset. The time between the second dose of vaccine and the breakthrough infection was 6 months. While immunosuppression is a known risk factor for prolonged infectious viral shedding, age and time between vaccination and breakthrough infection are important risk factors that warrant further studies.

5.
Saudi Pharm J ; 30(7): 979-1002, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867429

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a more severe strain of coronavirus (CoV) that was first emerged in China in 2019. Available antiviral drugs could be repurposed and natural compounds with antiviral activity could be safer and cheaper source of medicine for SARS-CoV-2. 78 natural antiviral compounds database was identified from literature and virtual screening technique was applied to identify potential 3-chymotrypsin-like protease (3CLpro) inhibitors. Molecular docking studies were conducted to analyze the main protease (3CLpro) and inhibitors interactions with key residues of active site of target protein (PDB ID: 6LU7), active site constitute the part of active domain I and II of 3CLpro. 10 compounds with highest dock score were subjected to calculate ADMET parameters to figure out drug-likeness. Molecular dynamic (MD) simulation of the selected lead was performed by Amber simulation package to understand the conformational changes in docked complex. MD simulations analysis (RMSD, RMSF, Rg, BF, HBs, and SASA plots) of lead bounded with 3CLpro, hence revealed the important structural turns and twists during MD simulations from 0 to 100 ns. MM-PBSA/GBSA methods has also been applied for the estimation binding free energy (BFE) of the selected lead-complex. The present study has identified lead compound "Forsythoside A" an active extract of Forsythia suspense as SARS-CoV-2 3CLpro inhibitor that can block the viral replication and translation. Structural analysis of target protein and lead compound performed in this study could contribute to the development of potential drug against SARS-CoV-2 infection.

6.
Sci Rep ; 12(1): 7005, 2022 04 29.
Article in English | MEDLINE | ID: covidwho-1830097

ABSTRACT

Camels gained attention since the discovery of MERS-CoV as intermediary hosts for potentially epidemic zoonotic viruses. DcHEV is a novel zoonotic pathogen associated with camel contact. This study aimed to genetically characterize DcHEV in domestic and imported camels in Saudi Arabia. DcHEV was detected by RT-PCR in serum samples, PCR-positive samples were subjected to sequencing and phylogenetic analyses. DcHEV was detected in 1.77% of samples with higher positivity in domestic DCs. All positive imported dromedaries were from Sudan with age declining prevalence. Domestic DcHEV sequences clustered with sequences from Kenya, Somalia, and UAE while imported sequences clustered with one DcHEV isolate from UAE and both sequences clustered away from isolates reported from Pakistan. Full-genome sequences showed 24 amino acid difference with reference sequences. Our results confirm the detection of DcHEV in domestic and imported DCs. Further investigations are needed in human and camel populations to identify DcHEV potential zoonosis threat.


Subject(s)
Coronavirus Infections , Hepatitis E virus , Animals , Camelus , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genetic Variation , Hepatitis E virus/genetics , Phylogeny , Saudi Arabia/epidemiology
7.
Comput Biol Chem ; 98: 107645, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1693749

ABSTRACT

In this paper, a compartmental mathematical model has been utilized to gain a better insight about the future dynamics of COVID-19. The total human population is divided into eight various compartments including susceptible, exposed, pre-asymptomatic, asymptomatic, symptomatic, quarantined, hospitalized and recovered or removed individuals. The problem was modeled in terms of highly nonlinear coupled system of classical order ordinary differential equations (ODEs) which was further generalized with the Atangana-Balaeanu (ABC) fractional derivative in Caputo sense with nonlocal kernel. Furthermore, some theoretical analyses have been done such as boundedness, positivity, existence and uniqueness of the considered. Disease-free and endemic equilibrium points were also assessed. The basic reproduction was calculated through next generation technique. Due to high risk of infection, in the present study, we have considered the reported cases from three continents namely Americas, Europe, and south-east Asia. The reported cases were considered between 1st May 2021 and 31st July 2021 and on the basis of this data, the spread of infection is predicted for the next 200 days. The graphical solution of the considered nonlinear fractional model was obtained via numerical scheme by implementing the MATLAB software. Based on the fitted values of parameters, the basic reproduction number ℜ0 for the case of America, Asia and Europe were calculated as ℜ0≈2.92819, ℜ0≈2.87970 and ℜ0≈2.23507 respectively. It is also observed that the spread of infection in America is comparatively high followed by Asia and Europe. Moreover, the effect of fractional parameter is shown on the dynamics of spread of infection among different classes. Additionally, the effect of quarantined and treatment of infected individuals is also shown graphically. From the present analysis it is observed that awareness of being quarantine and proper treatment can reduce the infection rate dramatically and a minimal variation in quarantine and treatment rates of infected individuals can lead us to decrease the rate of infection.


Subject(s)
COVID-19 , Quarantine , Asia , Basic Reproduction Number , COVID-19/epidemiology , Hospitalization , Humans
8.
Healthcare (Basel) ; 9(1)2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1011452

ABSTRACT

INTRODUCTION: the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of acute respiratory disease (COVID-19). SARS-CoV-2 is a positive-strand RNA virus and its genomic characterization has played a vital role in the design of appropriate diagnostics tests. The current RT-PCR protocol for SARS-CoV-2 detects two regions of the viral genome, requiring RNA extraction and several hours. There is a need for fast, simple, and cost-effective detection strategies. METHODS: we optimized a protocol for direct RT-PCR detection of SARS-CoV-2 without the need for nucleic acid extraction. Nasopharyngeal samples were diluted to 1:3 using diethyl pyrocarbonate (DEPC)-treated water. The diluted samples were incubated at 95 °C for 5 min in a thermal cycler, followed by a cooling step at 4 °C for 5 min. Samples then underwent reverse transcription real-time RT-PCR in the E and RdRp genes. RESULTS: our direct detection protocol showed 100% concordance with the standard protocol with an average Ct value difference of 4.38 for the E region and 3.85 for the RdRp region. CONCLUSION: the direct PCR technique was found to be a reliable and sensitive method that can be used to reduce the time and cost of the assay by removing the need for RNA extraction. It enables the use of the assay in research, diagnostics, and screening for COVID-19 in regions with fewer economic resources, where supplies are more limited allowing for wider use for screening.

SELECTION OF CITATIONS
SEARCH DETAIL